Seeing is Believing: Microbial Nanowires Propagate Charge Like Carbon Nanotubes

Research published in Nature Nanotechnology demonstrates that the pili of Geobacter sulfurreducens propagate charge in a manner similar to carbon nanotubes.  Electrostatic force microscopy revealed charge propagation along cytochrome-free portions of pili, consistent with multiple previous lines of physical and genetic evidence that the pili possess metallic-like conductivity.  The possibility of directly visualizing charge propagation with electrostatic force microscopy is likely to have broad application to the study of electrical connections in electromicrobiology.

The electrically conductive pili, otherwise known as microbial nanowires, have important environmental and practical implications. Microbial species electrically communicate through nanowires, sharing energy in important processes such as the conversion of wastes to methane gas. The nanowires permit Geobacter to live on iron and other metals in the soil, significantly changing soil chemistry and playing an important role in environmental cleanup. Microbial nanowires are also key components in the ability of Geobacter to produce electricity, a novel capability that is being adapted to engineer microbial sensors and biological computing devices.

 

Recent Findings

 

 

Selected Press Coverage

Basic Science with an Applied Product

Geobacterspecies are of interest because of their novel electron transfer capabilities, the ability to transfer electrons outside the cell and transport these electrons over long distances via conductive filaments known as microbial nanowires.  Geobacters have a major impact on the natural environment and have practical application in the fields of bioenergy, bioremediation, and bioelectronics.

Geobacter-Fe © 2005 eye of science

The first Geobacter species (initially designated strain GS-15) was isolated from sediments in the Potomac River, just down stream from Washington D.C. in 1987. This organism, which is known as Geobacter metallireducens, was the first organism found to oxidize organic compounds to carbon dioxide with iron oxide as the electron acceptor. In other words, Geobacter metallireducens gains its energy by using iron oxide (an abundant rust-like mineral in soils and sediments) in the same way that humans use oxygen. As outlined in the publication links, Geobacter metallireducens and other Geobacter species that have subsequently been isolated from a wide diversity of environments provide a model for important iron transformations on modern earth and may explain geological phenomena, such as the massive accumulation of magnetite in ancient iron formations.

Bioremediation Geobacter species are also of interest because of their role in environmental restoration. For example, Geobacter species can destroy petroleum contaminants in polluted groundwater by oxidizing these compounds to harmless carbon dioxide and can remove radioactive metal contaminants from groundwater.  As understanding of the functioning of Geobacter species has improved it has been possible to use this information to modify environmental conditions in order to accelerate the rate of bioremediation.

Bioenergy  Geobacter species play an important role in some anaerobic wastewater digesters degrading organic contaminants with electron transfer to microorganisms that produce methane, an important biofuel.  Recent results suggest that this electron transfer proceeds through Geobacter’s conductive microbial nanowires.  The ability of Geobacter species to oxidize organic compounds with electron transfer to electrodes shows promise as a strategy for producing bioelectricity, especially in remote environments.

Microbial Electrosynthesis This is a process for converting the greenhouse gas carbon dioxide to transportation fuels and other useful organic products.  When driven with solar technology microbial electrosynthesis is an artificial form of photosynthesis that offers the possibility of converting sunlight and carbon dioxide to desirable organic compounds much more efficiently and more sustainably than biomass-based processes.

Bioelectronics Geobacter species have novel electronic properties that may have practical applications.  For example, they can form highly cohesive conductive films that have conductivities that rival those of synthetic conductive polymers. The conductivity of the Geobacter films results from a network of microbial nanowires, thin (ca. 3 nm) protein filaments that conduct electrons along their length with metallic-like conductivity.  Thus, Geobacter offers the possibility of making electronic sensors and other devices,that work under water and can readily couple biological and abiological interfaces, from inexpensive feedstocks, like acetic acid (i.e. vinegar).

Systems Approach to Environmental MicrobiologyGeobacter species have proven to be an excellent model for the development of genome-scale analysis of natural environments, bioremediation, and bioenergy applications.  This approach has included sophisticated diagnosis of the physiological status of the subsurface microbial community during bioremediation to guide bioremediation supplements and predictive computer modeling of groundwater bioremediation coupling genome-scale metabolic models with geohydrological models.

Life in Extreme Environments - Some Like it Hot

Recent Publications

Heng Xu, Kaijun Wang, and Dawn E. Holmes.  2014.  Bioelectrochemical removal of carbon dioxide (CO2): an innovative method for biogas upgrading.  Bioresource Technology.  173:392-398. 

Toshiyuki Ueki, Kelly P. Nevin, Trevor L. Woodard, Derek R. Lovley.  2014.  Converting Carbon Dioxide to Butyrate with an Engineered Strain of Clostridium ljungdahlii.  mBio.  doi: 10.1128/mBio.01636-14

Nikhil S. Malvankar, Sibel Ebru Yalcin, Mark T. Tuominen, and Derek R. Lovley.  2014.  Visualization of charge propagation along individual pili proteins using ambient electrostatic force microscopy.  Nature Nanotechnology.  doi:10.1038/nnano.2014.236

Copyright © 2012 University of Massachusetts Amherst. Report site problems to lovley-web@microbio.umass.edu.

This is an official page of the University of Massachusetts Amherst campus, Department of Microbiology.  Terms and Conditions